Maurice Goldhaber

Wolf Prize Laureate in Physics 1991

The Physics Prize Committee has unanimously selected the following two candidates to equally share the Wolf Prize for 1991: Valentine L. Telegdi and Maurice Goldhaber.

 

Maurice Goldhaber
Brookhaven National Laboratory
New York, N.Y., U.S.A.

 

“for their separate seminal contributions to nuclear and particle physics, particularly those concerning the weak interactions involving leptons.”

 

Goldhaber’s and Telegdi’s studies in nuclear physics and the weak interactions are characterized by their incisive quality as well as the elegance of their conceptual formulation and execution.

 

Among Professor Maurice Goldhaber’s investigations we especially mention:

(1) the photodisintegration of the deuteron with Chadwick (1935).

(2) the dipole vibrations of the nucleus with Teller (1948) which explained the giant electric dipole resonances in nuclei and which was the first of a number of collective motions of the nucleus which have been subsequently observed.

(3) the classification of nuclear isomers and their elucidation via the shell model (1951).

(4) the measurement of the helicity of the electron neutrino with Grodzins and Sunyar (1958) emitted in K capture leading to the formation of an excited state of 152Sm which decays electromagnetically to its ground state

(5) he entertained the possibility in 1978 – 1979 that the proton may decay with a very long lifetime and became a driving force in the attempt to observe it experimentally.

 

Each of these examples has been of great importance to the development of nuclear and weak interaction physics. The measurement of the helicity of the neutrino demonstrated unequivocally the nature of the weak interactions in nuclei. It was a particularly beautiful experiment as it directly connected the helicity of the neutrino with the observable helicity of the photon emitted in the decay of the excited state of 152Sm.

 

Goldhaber has always had an active interest in the status of the symmetries and selection rules of the fundamental interactions. An example is the proton decay experiment. As of 1989, this study showed that the decay rate was less than 10 -33/proton years. This research result excluded a number of “Grand Unified Theories”, which proposed to unify the quark and lepton degrees of freedom.

 

 

Physics

// order posts by year $posts_by_year;

Allan H. MacDonald

Wolf Prize Laureate in Physics 2020

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Pablo Jarillo-Herrero

Wolf Prize Laureate in Physics 2020

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Rafi Bistritzer

Wolf Prize Laureate in Physics 2020

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Gilles Brassard

Wolf Prize Laureate in Physics 2018

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Charles H. Bennett

Wolf Prize Laureate in Physics 2018

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Michel Mayor

Wolf Prize Laureate in Physics 2017

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Didier Queloz

Wolf Prize Laureate in Physics 2017

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Yoseph Imry

Wolf Prize Laureate in Physics 2016

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Robert P. Kirshner

Wolf Prize Laureate in Physics 2015

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

James D. Bjorken

Wolf Prize Laureate in Physics 2015

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter Zoller

Wolf Prize Laureate in Physics 2013

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Juan Ignacio Cirac

Wolf Prize Laureate in Physics 2013

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Jacob Bekenstein

Wolf Prize Laureate in Physics 2012

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Maximilian Haider

Wolf Prize Laureate in Physics 2011

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Knut Urban

Wolf Prize Laureate in Physics 2011

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Harald Rose

Wolf Prize Laureate in Physics 2011

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

John F. Clauser

Wolf Prize Laureate in Physics 2010

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Anton Zeilinger

Wolf Prize Laureate in Physics 2010

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Alain Aspect

Wolf Prize Laureate in Physics 2010

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter Grünberg

Wolf Prize Laureate in Physics 2006/7

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Albert Fert

Wolf Prize Laureate in Physics 2006/7

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Daniel Kleppner

Wolf Prize Laureate in Physics 2005

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Robert Brout

Wolf Prize Laureate in Physics 2004

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter Higgs

Wolf Prize Laureate in Physics 2004

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

François Englert

Wolf Prize Laureate in Physics 2004

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Bertrand Halperin

Wolf Prize Laureate in Physics 2002/3

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Anthony J. Leggett

Wolf Prize Laureate in Physics 2002/3

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Raymond Davis Jr.

Wolf Prize Laureate in Physics 2000

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Masatoshi Koshiba

Wolf Prize Laureate in Physics 2000

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Dan Shechtman

Wolf Prize Laureate in Physics 1999

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Yakir Aharonov

Wolf Prize Laureate in Physics 1998

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Michael V. Berry

Wolf Prize Laureate in Physics 1998

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

John A. Wheeler

Wolf Prize Laureate in Physics 1997/8

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Yoichiro Nambu

Wolf Prize Laureate in Physics 1995/6

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Vitaly L. Ginzburg

Wolf Prize Laureate in Physics 1995/6

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Benoit B. Mandelbrot

Wolf Prize Laureate in Physics 1993

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Joseph H. Taylor Jr.

Wolf Prize Laureate in Physics 1992

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Valentine L. Telegdi

Wolf Prize Laureate in Physics 1991

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Maurice Goldhaber

Wolf Prize Laureate in Physics 1991

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Pierre-Gilles de Gennes

Wolf Prize Laureate in Physics 1990

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

David J. Thouless

Wolf Prize Laureate in Physics 1990

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Stephen W. Hawking

Wolf Prize Laureate in Physics 1988

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Roger Penrose

Wolf Prize Laureate in Physics 1988

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Riccardo Giacconi

Wolf Prize Laureate in Physics 1987

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Herbert Friedman

Wolf Prize Laureate in Physics 1987

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Bruno B. Rossi

Wolf Prize Laureate in Physics 1987

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Mitchell J. Feigenbaum

Wolf Prize Laureate in Physics 1986

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Albert J. Libchaber

Wolf Prize Laureate in Physics 1986

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Philippe Nozières

Wolf Prize Laureate in Physics 1984/5

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Conyers Herring

Wolf Prize Laureate in Physics 1984/5

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Theodore H. Maiman

Wolf Prize Laureate in Physics 1983/4

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter B. Hirsch

Wolf Prize Laureate in Physics 1983/4

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Erwin L. Hahn

Wolf Prize Laureate in Physics 1983/4

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Martin L. Perl

Wolf Prize Laureate in Physics 1982

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Leon M. Lederman

Wolf Prize Laureate in Physics 1982

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Victor J. Weisskopf

Wolf Prize Laureate in Physics 1981

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Gerard ‘T Hooft

Wolf Prize Laureate in Physics 1981

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Freeman J. Dyson

Wolf Prize Laureate in Physics 1981

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Michael E. Fisher

Wolf Prize Laureate in Physics 1980

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Leo P. Kadanoff

Wolf Prize Laureate in Physics 1980

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Kenneth G. Wilson

Wolf Prize Laureate in Physics 1980

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Giuseppe Occhialini

Wolf Prize Laureate in Physics 1979

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

George E. Uhlenbeck

Wolf Prize Laureate in Physics 1979

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Chien-Shiung Wu

Wolf Prize Laureate in Physics 1978

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.