James D. Bjorken

Wolf Prize Laureate in Physics 2015

The Prize Committee for Physics has unanimously decided that the 2015 Wolf Prize be awarded to: James D. Bjorken and Robert P. Kirshner.

 

Prof. James D. Bjorken

Stanford University, USA

 

This year’s Wolf prize in physics is awarded to two researchers who made fundamental contributions toward understanding the structure of the Universe at the very smallest and the very largest sizes: James D. Bjorken: For predicting scaling in deep inelastic scattering, leading to identification of nucleon’s pointlike constituents Robert Kirshner: For forging the path to supernova cosmology through his observations and insights

 

The strong force is responsible for the existence of protons and neutrons and for holding them together in atomic nuclei. It is also responsible for over 99% of the atoms’ mass. Bjorken made a crucial contribution for elucidating the nature of the strong force. In 1967 Bjorken predicted that electrons scattering violently off protons would exhibit the so-called scaling behavior, as if they were interacting with pointlike, charged and quasi-free particles inside the nucleon. At the time this was a very counterintuitive and radical idea. Yet, subsequent experiments, carried in 1968/69 at the Stanford Linear Accelerator Center (SLAC), provided a stunning confirmation for Bjorken’s scaling prediction. The leaders of the SLAC experiments, Jerome Friedmann, Henry Kendall and Richard Taylor were recognized by the 1990 Nobel Prize in Physics, for providing the experimental proof for the existence of quarks – the pointlike constituents of the nucleon.

 

Following the experimental success of Bjorken’s scaling laws, theorists embarked on a quest for a fundamental quantum theory which exhibits scaling. In 1973 David Gross, Frank Wilczek and H. David Politzer discovered that a theory now known as Quantum Chromodynamics (QCD) possesses the required property, namely that the force between quarks goes down as they get closer, so that at small distance they behave as if they were free. This property is now known as “asymptotic freedom”. In 2004 Gross, Wilczek and Politzer were awarded the Nobel Physics Prize for their discovery. QCD was validated in detail by extensive experiments as the theory of Strong Interactions.

 

The prevailing view today is that all fundamental interactions in Nature, with possible exception of gravity, are described by theories whose mathematical structure is analogous to QCD. Such theories are known as non-abelian gauge theories. Thus in retrospective, Bjorken’s scaling not only led to the discovery of quarks, but also pointed the direction toward the mathematical framework governing all fundamental interactions.

Physics

// order posts by year $posts_by_year;

Allan H. MacDonald

Wolf Prize Laureate in Physics 2020

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Pablo Jarillo-Herrero

Wolf Prize Laureate in Physics 2020

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Rafi Bistritzer

Wolf Prize Laureate in Physics 2020

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Gilles Brassard

Wolf Prize Laureate in Physics 2018

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Charles H. Bennett

Wolf Prize Laureate in Physics 2018

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Michel Mayor

Wolf Prize Laureate in Physics 2017

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Didier Queloz

Wolf Prize Laureate in Physics 2017

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Yoseph Imry

Wolf Prize Laureate in Physics 2016

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Robert P. Kirshner

Wolf Prize Laureate in Physics 2015

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

James D. Bjorken

Wolf Prize Laureate in Physics 2015

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter Zoller

Wolf Prize Laureate in Physics 2013

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Juan Ignacio Cirac

Wolf Prize Laureate in Physics 2013

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Jacob Bekenstein

Wolf Prize Laureate in Physics 2012

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Maximilian Haider

Wolf Prize Laureate in Physics 2011

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Knut Urban

Wolf Prize Laureate in Physics 2011

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Harald Rose

Wolf Prize Laureate in Physics 2011

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

John F. Clauser

Wolf Prize Laureate in Physics 2010

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Anton Zeilinger

Wolf Prize Laureate in Physics 2010

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Alain Aspect

Wolf Prize Laureate in Physics 2010

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter Gruenberg

Wolf Prize Laureate in Physics 2006/7

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Albert Fert

Wolf Prize Laureate in Physics 2006/7

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Daniel Kleppner

Wolf Prize Laureate in Physics 2005

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Robert Brout

Wolf Prize Laureate in Physics 2004

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter W. Higgs

Wolf Prize Laureate in Physics 2004

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Francois Englert

Wolf Prize Laureate in Physics 2004

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Bertrand I. Halperin

Wolf Prize Laureate in Physics 2002/3

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Anthony J. Leggett

Wolf Prize Laureate in Physics 2002/3

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Raymond Davis Jr

Wolf Prize Laureate in Physics 2000

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Masatoshi Koshiba

Wolf Prize Laureate in Physics 2000

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Dan Shechtman

Wolf Prize Laureate in Physics 1999

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Yakir Aharonov

Wolf Prize Laureate in Physics 1998

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Sir Michael V. Berry

Wolf Prize Laureate in Physics 1998

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

John A. Wheeler

Wolf Prize Laureate in Physics 1997/8

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Yoichiro Nambu

Wolf Prize Laureate in Physics 1995/6

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Vitaly L. Ginzburg

Wolf Prize Laureate in Physics 1995/6

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Benoit B. Mandelbrot

Wolf Prize Laureate in Physics 1993

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Joseph H. Taylor Jr.

Wolf Prize Laureate in Physics 1992

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Valentine L. Telegdi

Wolf Prize Laureate in Physics 1991

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Maurice Goldhaber

Wolf Prize Laureate in Physics 1991

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Pierre-Gilles de Gennes

Wolf Prize Laureate in Physics 1990

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

David J. Thouless

Wolf Prize Laureate in Physics 1990

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Stephen W. Hawking

Wolf Prize Laureate in Physics 1988

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Roger Penrose

Wolf Prize Laureate in Physics 1988

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Riccardo Giacconi

Wolf Prize Laureate in Physics 1987

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Herbert Friedman

Wolf Prize Laureate in Physics 1987

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Bruno B. Rossi

Wolf Prize Laureate in Physics 1987

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Mitchell J. Feigenbaum

Wolf Prize Laureate in Physics 1986

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Albert J. Libchaber

Wolf Prize Laureate in Physics 1986

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Philippe Nozieres

Wolf Prize Laureate in Physics 1985

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Conyers Herring

Wolf Prize Laureate in Physics 1984/5

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Theodore H. Maiman

Wolf Prize Laureate in Physics 1983/4

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Sir Peter B. Hirsch

Wolf Prize Laureate in Physics 1983/4

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Erwin L. Hahn

Wolf Prize Laureate in Physics 1983/4

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Martin M. Perl

Wolf Prize Laureate in Physics 1982

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Leon M. Lederman

Wolf Prize Laureate in Physics 1982

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Victor J. Weisskopf

Wolf Prize Laureate in Physics 1981

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Gerard ‘T Hooft

Wolf Prize Laureate in Physics 1981

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Freeman J. Dyson

Wolf Prize Laureate in Physics 1981

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Michael E. Fisher

Wolf Prize Laureate in Physics 1980

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Leo P. Kadanoff

Wolf Prize Laureate in Physics 1980

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Kenneth G. Wilson

Wolf Prize Laureate in Physics 1980

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Giuseppe Occhialini

Wolf Prize Laureate in Physics 1979

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

George E. Uhlenbeck

Wolf Prize Laureate in Physics 1979

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Chien-Shiung Wu

Wolf Prize Laureate in Physics 1978

The Wolf Foundation Prize Committee for Physics unanimously chosen as the recipient of the first Wolf Prize in Physics;

 

Chien-Shiung Wu
Columbia University
New York, N.Y., USA

 

for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963 but is still continuing. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

 

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

 

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

 

Among Wu´s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac´s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.