Rafi Bistritzer
Wolf Prize Laureate in Physics 2020
Rafi Bistritzer
Affiliation at the time of the award:
Applied Materials, Israel
Award citation:
“For pioneering theoretical and experimental work on twisted bilayer graphene.”
Prize Share:
Rafi Bistritzer
Allan H. MacDonald
Pablo Jarillo-Herrero
Since the 2004 groundbreaking experiments regarding the two-dimensional material -graphene, several research groups were soon studying the properties of twisted bilayer graphene. Graphene is a significant foundation for an entirely new generation of technologies. The hope is that graphene-based applications will benefit the environment and reduce costs. Electronic and computer industry requires materials whose conductance can be controlled.
The work of Jarillo-Herrero, MacDonald and Bistrizer has shown that the conductance properties of graphene interfaces can be controlled via the spatial misfit angle between the layers and then at certain angles the electrons exhibit surprising physical behavior. This physical discovery has the potential of leading to an energy revolution.
In 2011, a group led by Allan Macdonald, a theoretical physicist from the University of Texas, researched an intriguing behavior of twisted bilayer graphene, where the atomic lattices of two stacked graphene layers are laterally rotated with respect to each other by a small misfit angle. According to the calculations of MacDonald and Bistrizer (who did his post-doctoral thesis under the supervision of MacDonald at that time), the tunneling velocity of electrons between the layers depends on the misfit angle and completely vanishes at the “magic angle” of 1.1 degrees. It was hoped that this discovery would lead to the creation of a new type of super-conductor, namely a material that allows electrical current to pass with no impedance and with no energy loss.
The original paper by MacDonald and Bistrizer, which describes their discovery, was not received with enthusiasm by the scientific community and was even forgotten for several years.
At the same time, Jarillo-Herrero was working on twisted bilayer graphene in his lab at MIT. He became convinced that the ideas expressed by Macdonald and Bistrizer had substance.
His research team therefore invested considerable efforts in creating and measuring twisted bilayer graphene of various twist angles. The experiments proved successful in 2017 when it was found that positioning the layers at an angle of 1.1 degrees relative to one another (“the magic angle”) resulted in unusual electrical properties, precisely as MacDonald and Bistrizer have suggested. In this position, at sufficiently low temperatures, the electrons move from one layer to the other, creating a lattice with unusual qualities. The paper that described the phenomenon, which was published in Nature in 2018, revolutionized physics and triggered a flood of additional papers.
The discovery opens the door to building a super-conductor from bilayer graphene, in which electron movement is completely controlled by external electrical current. This electrical behavior resembles the behavior of copper-based superconductors called Cuprates. Cuprates demonstrate electrical conductivity with no resistance in relatively high temperatures compared with other super-conductors. For this reason, Cuprates now form a source of hope for realizing the dream of electrical conductivity with no energy loss at temperatures close to room temperature. If this mission is achieved, it would lead to a far-reaching energy revolution. However, one obstacle that prevents this revolution is that we do not yet have a theory that explains the behavior of superconductors at high temperatures. In the absence of a solid theoretical foundation, it is difficult to develop new, better materials. This is one of the reasons for the excitement around the discovery of bilayer graphene and the magic angle, which allows us to understand better what happens on the microscopic level when transitioning from a conductor to a superconductor state.
Rafi Bistritzer (1974, Israel) received his bachelor’s degree in physics from Tel Aviv University and his M.Sc. and Ph.D. degrees in physics from the Weizmann Institute of Science. In 2007, Bistritzer moved to Austin, where he completed a postdoctoral fellowship at the University of Texas, under the guidance of Professor McDonald. In 2012, he returned to Israel and worked on research and development in the fields of electromagnetsm and algorithms. Bistritzer is currently the manager of an algorithm group at Applied Materials. Bistritzer’s group specializes in computer-vision and machine learning algorithms.