Valentine L. Telegdi

Wolf Prize Laureate in Physics 1991

Valentine L. Telegdi

 

Affiliation at the time of the award:

Swiss Federal Institute of Technology (ETH), Switzerland

 

Award citation:

“for their separate seminal contributions to nuclear and particle physics, particularly those concerning the weak interactions involving leptons”.

 

Prize share:

Valentine L. Telegdi  

Maurice Goldhaber

 

Goldhaber’s and Telegdi’s studies in nuclear physics and the weak interactions are characterized by their incisive quality as well as the elegance of their conceptual formulation and execution.

Valentine Telegdi began his research in the field of photo-excitation and disintegration of light nuclei but later centered his experimental studies on the physics of the muons.

(1) He demonstrated parity violation in the decay sequence
π+→ μ+ + vμ , μ+ → e+ + ve + ve
in nuclear emulsions and was well on his way to a definitive result when Wu, Ambler et al. announced their results for parity violation in beta decay in 1957.

(2) Hi s extensive work on muon capture by nuclei determined the form of the weak interaction in considerable detail.

(3) In 1981 he achieved a long held ambition to accurately measure the helicity of the muon-neutrino in the reaction
µ¯ + 12C → 12B + vμ
the muonic analog of the Goldhaber, Srodzins and Sunyar experiment described earlier.
Through this experiment together with those included under

(4) he demonstrated the universal character of the weak interactions; namely that the interactions describing
µ¯ + p → n + vμ
and
e¯ + p → n + ve
have the same form.

(5) He studied the atom, “muonium” and measured its hyperfine structure with a precision sufficient to determine the fine structure constant
α( = e2 / hc )
comparable with its determination from other independent studies.

(6) He introduced a new method for the determination of the magnetic moment of the muon by obtaining by direct experiment the value of g – 2 for the muon. With others he used this method to obtain the muon magnetic moment to an accuracy of 10-5 .

He is well known for his elegant experiments on neutral kaons which tested our understanding of the mixing between the Ko and Ko states of opposite strangeness in the physically observed short lived KoS and long lived KoL, states.

(7) He was the first to observe in 1958 that a long lived beam having positive strangeness at the source produced absorptive reactions characteristic of negative strangeness in nuclear emulsions, providing direct qualitative evidence for the mixed-strangeness property of KoL.

(8) In another remarkable experiment he observed the KoL → KoS regeneration by electrons which yielded a mean electromagnetic radius for neutral kaons.

(9) Finally we select from his many experiments involving nuclear beta decay those from which he derived an upper limit on the magnitude of the second class beta ray interaction current.

Physics

// order posts by year $posts_by_year;

Ferenc Krausz

Wolf Prize Laureate in Physics 2022

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Paul Corkum

Wolf Prize Laureate in Physics 2022

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Anne L’Huillier

Wolf Prize Laureate in Physics 2022

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Giorgio Parisi

Wolf Prize Laureate in Physics 2021

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Allan H. MacDonald

Wolf Prize Laureate in Physics 2020

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Pablo Jarillo-Herrero

Wolf Prize Laureate in Physics 2020

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Rafi Bistritzer

Wolf Prize Laureate in Physics 2020

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Gilles Brassard

Wolf Prize Laureate in Physics 2018

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Charles H. Bennett

Wolf Prize Laureate in Physics 2018

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Michel Mayor

Wolf Prize Laureate in Physics 2017

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Didier Queloz

Wolf Prize Laureate in Physics 2017

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Yoseph Imry

Wolf Prize Laureate in Physics 2016

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Robert P. Kirshner

Wolf Prize Laureate in Physics 2015

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

James D. Bjorken

Wolf Prize Laureate in Physics 2015

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter Zoller

Wolf Prize Laureate in Physics 2013

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Juan Ignacio Cirac

Wolf Prize Laureate in Physics 2013

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Jacob Bekenstein

Wolf Prize Laureate in Physics 2012

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Maximilian Haider

Wolf Prize Laureate in Physics 2011

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Knut Urban

Wolf Prize Laureate in Physics 2011

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Harald Rose

Wolf Prize Laureate in Physics 2011

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

John F. Clauser

Wolf Prize Laureate in Physics 2010

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Anton Zeilinger

Wolf Prize Laureate in Physics 2010

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Alain Aspect

Wolf Prize Laureate in Physics 2010

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter Grünberg

Wolf Prize Laureate in Physics 2006/7

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Albert Fert

Wolf Prize Laureate in Physics 2006/7

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Daniel Kleppner

Wolf Prize Laureate in Physics 2005

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Robert Brout

Wolf Prize Laureate in Physics 2004

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter Higgs

Wolf Prize Laureate in Physics 2004

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

François Englert

Wolf Prize Laureate in Physics 2004

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Bertrand Halperin

Wolf Prize Laureate in Physics 2002/3

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Anthony J. Leggett

Wolf Prize Laureate in Physics 2002/3

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Raymond Davis Jr.

Wolf Prize Laureate in Physics 2000

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Masatoshi Koshiba

Wolf Prize Laureate in Physics 2000

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Dan Shechtman

Wolf Prize Laureate in Physics 1999

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Yakir Aharonov

Wolf Prize Laureate in Physics 1998

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Michael V. Berry

Wolf Prize Laureate in Physics 1998

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

John A. Wheeler

Wolf Prize Laureate in Physics 1996/7

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Yoichiro Nambu

Wolf Prize Laureate in Physics 1994/5

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Vitaly L. Ginzburg

Wolf Prize Laureate in Physics 1994/5

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Benoit B. Mandelbrot

Wolf Prize Laureate in Physics 1993

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Joseph H. Taylor Jr.

Wolf Prize Laureate in Physics 1992

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Valentine L. Telegdi

Wolf Prize Laureate in Physics 1991

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Maurice Goldhaber

Wolf Prize Laureate in Physics 1991

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Pierre-Gilles de Gennes

Wolf Prize Laureate in Physics 1990

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

David J. Thouless

Wolf Prize Laureate in Physics 1990

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Stephen W. Hawking

Wolf Prize Laureate in Physics 1988

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Roger Penrose

Wolf Prize Laureate in Physics 1988

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Riccardo Giacconi

Wolf Prize Laureate in Physics 1987

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Herbert Friedman

Wolf Prize Laureate in Physics 1987

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Bruno B. Rossi

Wolf Prize Laureate in Physics 1987

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Mitchell J. Feigenbaum

Wolf Prize Laureate in Physics 1986

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Albert J. Libchaber

Wolf Prize Laureate in Physics 1986

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Philippe Nozières

Wolf Prize Laureate in Physics 1985

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Conyers Herring

Wolf Prize Laureate in Physics 1985

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Theodore H. Maiman

Wolf Prize Laureate in Physics 1984

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Peter B. Hirsch

Wolf Prize Laureate in Physics 1984

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Erwin L. Hahn

Wolf Prize Laureate in Physics 1984

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Martin L. Perl

Wolf Prize Laureate in Physics 1982

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Leon M. Lederman

Wolf Prize Laureate in Physics 1982

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Victor J. Weisskopf

Wolf Prize Laureate in Physics 1981

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Gerard T. Hooft

Wolf Prize Laureate in Physics 1981

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Freeman J. Dyson

Wolf Prize Laureate in Physics 1981

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Michael E. Fisher

Wolf Prize Laureate in Physics 1980

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Leo P. Kadanoff

Wolf Prize Laureate in Physics 1980

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Kenneth G. Wilson

Wolf Prize Laureate in Physics 1980

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Giuseppe Occhialini

Wolf Prize Laureate in Physics 1979

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

George E. Uhlenbeck

Wolf Prize Laureate in Physics 1979

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.

Chien-Shiung Wu

Wolf Prize Laureate in Physics 1978

Chien-Shiung Wu

 

Affiliation at the time of the award:

Columbia University, USA

 

Award citation:

“for her persistent and successful exploration of the weak interaction which helped establish the precise form and the non conservation of parity for this new natural force.”

 

Prize share:

None

 

Professor Chien-Shiung Wu has done outstanding experimental work on the mechanism of beta disintegration, and thereby, of weak interactions generally. This work extended mostly from 1948 to 1963. In addition, she has made important contributions to several other fields of fundamental physics, to physics Instrumentation, and recently, to biology.

In her most famous work, she demonstrated that the direction of emission of beta rays is strongly correlated with the direction of the spin of the emitting nucleus. This showed that parity is not conserved in beta disintegration, in accord with the epochal theory of Lee and Yang, which had been developed just a few months before.

The success of this theory raised the problem of the exact coupling between the nucleon, which undergoes beta decay, and the electron and neutrino, which are emitted in this decay.

Among Wu’s other contributions we want to mention her demonstration that the two quanta from the annihilation of positrons and electrons are polarized at right angles to each other, as they should be according to Dirac’s theory. This proves that electron and positron have opposite parity. In recent years (1966 to 1971), Wu has made a thorough study of the X ray spectra of muonic atoms and has become interested in biological problems, especially the structure of hemoglobin. Her Moessbauer studies of this substance have given surprising results, and have considerably clarified its structure.