Benjamin F. Cravatt III
Wolf Prize Laureate in Chemistry 2022
Benjamin F. Cravatt
Affiliation at the time of the award:
Scripps Research Institute, USA
Award citation:
“for developing activity-based protein profiling, a chemical proteomic strategy, to characterize enzyme function in native biological systems, and describe numerous enzymes which play critical roles in human biology and disease, including the endocannabinoid hydrolases whose lipid products regulate communication between cells”.
Prize share:
Benjamin F. Cravatt
Carolyn Bertozzi
Bonnie Bassler
“for their seminal contributions to understanding the chemistry of cellular communication and inventing chemical methodologies to study the role of carbohydrates, lipids, and proteins in such biological processes”.
Cravatt, the Gilula Chair of Chemical Biology and Professor in the Department of Chemistry at The Scripps Research Institute. His research aims to understand proteins’ roles in human physiological and pathological processes and use this knowledge to identify novel therapeutic targets and drugs to treat diseases.
Cravatt was inspired to think about biology by his parents and credits his high school mathematics teachers for nurturing his interest in the quantitative sciences. Cravatt obtained his undergraduate education at Stanford University, receiving a B.Sc in Biology and a B.A. in History. He then received a Ph.D. from The Scripps Research
Institute (TSRI) in 1996 and joined the faculty at TSRI in 1997.
Bridging the fields of chemistry and biology, Cravatt and his research group have developed and applied technologies to discover biochemical pathways in mammalian biology and disease. Cravatt pioneered an approach to identify protein classes based on their activity. His multidisciplinary approach generates all tools and models required to assign molecular, cellular, and physiological functions to enzymes and, as an essential corollary, assess their suitability as therapeutic targets. He achieves a unique balance that cultivates the creation and rapid implementation of cutting-edge technologies to advance basic and translational science.
Cravatt’s work on the endocannabinoid system has radically changed the landscape of proteome analysis by demonstrating how innovative chemical methods can be used to broadly and deeply investigate protein function directly in native biological systems.
The chemical proteomic technology Activity-Based Protein Profiling (ABPP), pioneered by Cravatt employs chemical probes to directly measure enzyme function. For example, a fluorescent label may be used to tag enzymes with certain chemical properties, allowing scientists to survey all active enzymes in a cell at once, and to determine
the targets of drugs in a global manner directly in living systems.
Cravatt has used this and related chemical proteomic technologies to conduct global analyses of protein activities and to elucidate the functions of several enzymes, including those linked to human cancers, neurological disorders, and the endocannabinoid system, which consists of lipid transmitters involved in appetite regulation, pain sensation, mood, memory, and other physiological processes.
Benjamin Cravatt is awarded the Wolf prize for developing activity-based protein profiling, which has emerged as a powerful and widely used chemical proteomic strategy to characterize enzyme function in native biological systems. He used this approach to characterize numerous enzymes which play critical roles in human biology and disease, including the endocannabinoid hydrolases whose lipid products regulate communication between cells.