Chuan He
Wolf Prize Laureate in Chemistry 2023
Chuan He
Affiliation at the time of the award:
The University of Chicago, USA
Award citation:
“for discovering reversible RNA methylation and its role in the regulation of gene expression”.
Prize share:
Chuan He
Jeffery W. Kelly
Hiroaki Suga
“for pioneering discoveries that illuminate the functions and pathological dysfunctions of RNA and proteins and for creating strategies to harness the capabilities of these biopolymers in new ways to ameliorate human diseases”.
Chuan He is a Chinese-American chemical biologist, the John T. Wilson Distinguished Service Professor at the University of Chicago, and an Investigator at the Howard Hughes Medical Institute. He graduated from the University of Science and Technology of China with a B.S. in Chemistry (1994), Ph.D. at MIT, and postdoctoral research at Harvard University. He joined the Department of Chemistry at the University of Chicago in 2002 and served as the Director of the Institute for Biophysical Dynamics (2012 -2017).
More than 150 structurally distinct post-transcriptional modifications of cellular RNA molecules occur at thousands of sites. Some of these modifications are dynamic and may have critical regulatory roles analogous to protein and DNA modifications. Therefore, understanding the scope and mechanisms of dynamic RNA modifications represents an emerging research frontier in biology and medicine.
Prof. Chuan He is a world-class expert studying RNA’s post-transcriptional modifications, the role these modifications play in cellular processes, and their broad impact on mammalian development and human diseases. His research, spanning a wide range of chemical biology, nucleic acid chemistry, biology, epigenetics, and bioinorganic chemistry, focuses on understanding both RNA and DNA’s modifications and their roles in regulating gene expression.
He was the first to champion the idea that RNA modifications are reversible and can control gene expression. His work is fundamental in developing potential therapies that target RNA methylation effectors against human diseases such as cancer. His research group was the first to identify proteins that can erase, and undo changes made to RNA molecules, which sparked the emergence of the epitranscriptome field. Prof. He explained how RNA methylation functions through characterizing reader proteins—processes that play critical roles in many types of cancer, including endometrial cancer, acute myelogenous leukemia, and glioblastoma.
Chuan He is awarded the Wolf prize for his pioneering work elucidating the chemistry and functional consequences of RNA modification. He discovered reversible RNA methylation, leading to a conceptual breakthrough regarding the functional roles of RNA modifications in the regulation of gene expression. The He laboratory discovered the first RNA demethylase, an enzyme that removes the methyl group from N6-methyladenosine, the most prevalent mRNA modification in eukaryotes.