Carmel Rotchild

Krill Prize 2017
Technion

Dr. Carmel Rotchild

  • New thermodynamic ideas for solar energy: In principle, converting inefficient parts of the solar spectrum to wavelengths most suitable for photovoltaics should double their efficiency. Confronting this problem using conventional optical frequency conversion methods is known to be very challenging because they require huge intensities and high coherence far above solar radiation.

Recently, we discovered what we believe is a breakthrough in both fundamental and applied science. The radiance of thermal emission, as described by Planck’s law, depends only on the emissivity and temperature of a body, and increases monotonically with temperature rise at any emitted wavelength. Nonthermal radiation, such as photoluminescence (PL), is a fundamental light–matter interaction that conventionally involves the absorption of an energetic photon, thermalization, and the emission of a red-shifted photon. In this quantum process, radiation is governed by the photon rate conservation and thermodynamically described by the chemical potential. Until recently, the role of rate conservation when thermal excitation is significant had not been studied in any nonthermal radiation, leaving open many questions; for example, what is the overall emission rate if a high quantum efficiency PL material is heated to a temperature

where it thermally emits a rate of 50 photons/sec at its bend edge, while in parallel, the PL is excited at a rate of 100 photons/sec? We discovered that the answer is an overall rate of 100 blue-shifted photons/sec. In contrast to thermal emission, the PL rate is conserved if the temperature increases, while each photon is blue-shifted. A further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also demonstrated how endothermic-PL generates orders of magnitude more energetic photons than thermal emission at similar temperatures. These findings show that PL is an ideal optical heat pump, and can harvest thermal losses in photovoltaics with theoretical maximal efficiency of 70%, and a practical device that aims to reach 48% efficiency. These discoveries have already  led to two publications in leading journals (Optica, Nature Communication and its Optics and Photonics News). A paper was also published in the proceedings as an invited talk at SPIE, the largest conference on optics. Based on our proposed device, we were invited to join in publishing with leading researchers in the field (Eli Yablonovich, Gang Chen, Martin Green, and more) on the “Roadmap on the Optical Energy Conversion”. These publications of my group put us in the vanguard of research on the thermodynamics of radiation. As a result of these achievements, I have been invited to give numerous invited talks and my student, Dr. Assaf Manor, was awarded an ‘Adams Fellowship’. We are currently aiming to demonstrate a fully operational energy conversion device with record efficiency as part of our ERC grant on “new thermodynamic ideas for frequency conversion and photovoltaics”. Due to its ‘all optical’ nature, and low temperature operation, such a device has a significant chance of becoming a disruptive technology in photovoltaics.

  • New thermodynamic idea for extreme optical frequency up-conversion: Frequency up- conversion of a few low-energy photons into a single high-energy photon contributes to imaging, light sources, and detection. The up-converting of many photons, however, exhibits negligible efficiency. Up-conversion through laser heating is an efficient means to generate energetic photons, yet the spectrally broad thermal emission and the challenge of operating at high temperatures limit its practicality. We recently developed and demonstrated experimentally up- conversion by excitation of a steady-state nonthermal-equilibrium population, which induces steady, narrow emission at a practical bulk temperature. Specifically, we used a 10.6mm laser to resonantly excite vibronic states in silica that are coupled to emitters operating at 980nm. The result is a narrow emission with 4% total efficiency and up-converted radiance that far exceeds the device’s possible black-body radiation. Such efficiency is better by many orders of magnitude than ever reported and opens the way for the development of new light sources with record efficiencies. We recently published these results in ASC Photonics. In another paper, currently under review, we use the same method to demonstrate experimentally that in contrast to thermal excitation, different co-doped emitters compete with each other for energy transferred from the ‘hot’ vibronic modes in a similar way as in photoluminescence (down conversion), even though the photon energy is increased 10-fold. In addition, the same method is used to generate 13-, 16- and 20-fold narrow up-conversion at record efficiencies. Further development of this method using tailored materials will put us in a position to present new and more efficient UV and X-ray
  • New thermodynamic idea for solar powered laser and on chip high-Q lasers: The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and energy storage. Prior to our work, solar powered lasers only operated under highly concentrated sunlight (above 3000 suns), which makes them inapplicable. As Yablonovich presented in his paper ‘Thermodynamics of Daylight- pumped Lasers’, for lasers to operate with non-concentrated solar radiation, it requires a super lasing material that has a ratio between pump absorption and absorption at lasing wavelength that exceeds 105. This ratio is nearly three orders of magnitude higher than known lasing materials. In my postdoc, I showed that such a material can be tailored by cascaded energy transfer between available materials. Now, using this method, we were able to have demonstrate low threshold solar lasers operating at 200 suns. This work was published in Scientific Reports, and co- authored with my MIT supervisor, Marc Balo. Although this concept is my idea, and my student, Sergey Nechayev, did most of the experiments, it was done in Marc’s lab at MIT as a result of the delay in my lab In a second paper recently published in Scientific

Reports, with the same authors, I developed a new analytic tool for an incoherent pump for photonic devices. The simulation is based on a modified net radiation method where we incorporated photoluminescence and is much simpler and more reliable than existing Monte- Carlo or coherent simulations. We used this method for a solar powered laser and revealed, for the first time, that pump absorption cannot be maximal as in conventional lasers, but must be optimized due to the tradeoff between pump absorption and absorption at lasing wavelength. A third paper on the thermodynamic efficiency limit of solar powered lasers, and its analog to solar cells is currently under review. These publications put us in the forefront of incoherent pumped laser research.

The Krill Prize Winners

// order posts by year $posts_by_year;

Yuval Hart

Krill Prize 2023
The Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Tomer Koren

Krill Prize 2023
Tel-Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Inbal Talgam-Cohen

Krill Prize 2023
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Nitzan Gonen

Krill Prize 2023
Bar-Ilan

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Viviane Slon

Krill Prize 2023
Tel-Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yotam Drier

Krill Prize 2023
The Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ido Goldstein

Krill Prize 2023
The Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Shay Moran

Krill Prize 2023
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Aviv Tamar

Krill Prize 2023
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Leeat Keren

Krill Prize 2023
Weizmann

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ely Kovetz

Krill Prize 2022
Ben-Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Sivan Refaely-Abramson

Krill Prize 2022
Weizmann Institute of Science

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Moran Yassour

Krill Prize 2022
The Hebrew University of Jerusalem

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Jonathan Ruhman

Krill Prize 2022
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yehonadav Bekenstein

Kril Prize 2022
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ittay Eyal

Krill Prize 2022
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Haitham Amal

Krill Prize 2022
The Hebrew University of Jerusalem

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Gili Bisker

Krill Prize 2022
Tel-Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ron Rothblum

Krill Prize 2022
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Uri Ben-David

Krill Prize 2022
Tel-Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yoav Shechtman

Krill Prize 2021
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Moran Shalev Ben-Ami

Krill Prize 2021
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Benyamin Rosental

Krill Prize 2021
Ben-Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ido Kaminer

Krill Prize 2021
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Tamir klein

Krill Prize 2021
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Merav Parter

Krill Prize 2021
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Guy Katz

Krill Prize 2021
The Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Naomi Habib

Krill Prize 2021
The Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Liron Barak

Krill Prize 2021
Tel-Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Joshua Baraban

Krill Prize 2021
Ben-Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Schraga Schwartz

Krill Prize 2020
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Kfir Blum

Krill Prize 2020
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Tomer Michaeli

Krill Prize 2020
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yuval Filmus

Krill Prize 2020
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Meirav Zehavi

Krill Prize 2020
Ben Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Idan Hod

Krill Prize 2020
Ben Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Adam Teman

Krill Prize 2020
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yasmine Meroz

Krill Prize 2020
Tel Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yakir Hadad

Krill Prize 2020
Tel Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yonit Hochberg

Krill Prize 2020
Hebrew Univ.

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Neta Regev-Rudzki

Krill Prize 2019
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ofer Firstenberg

Krill Prize 2019
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Amnon Bar-Shir

Krill Prize 2019
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Shahar Kvatinsky

Krill Prize 2019
Technion Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yaron Fuchs

Krill Prize 2019
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Baruch Barzel

Krill Prize 2019
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Malachi Noked

Krill Prize 2019
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Noga Ron-Zewi

Krill Prize 2019
Haifa University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Dafna Shahaf

Krill Prize 2019
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ori Katz

Krill Prize 2019
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Itzhak Tamo

Krill Prize 2018
Tel-Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Amit Sever

Krill Prize 2018
Tel-Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Meital Landau

Krill Prize 2018
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Charles E. Diesendruck

Krill Prize 2018
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yakov Babichenko

Krill Prize 2018
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ayelet Erez

Krill Prize 2018
Weismann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Adi Salomon

Krill Prize 2018
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Elad Gross

Krill Prize 2018
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Emmanuel Levy

Krill Prize 2018
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Anat Milo

Krill Prize 2018
Ben-Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Avi Shroeder

Krill Prize 2017
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Carmel Rotchild

Krill Prize 2017
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Shiri Chechik

Krill Prize 2017
Tel Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yonatan Dubi

Krill Prize 2017
Ben Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yoav Goldberg

Krill Prize 2017
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Zvika Brakerski

Krill Prize 2017
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Asya Rolls

Krill Prize 2017
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Nir Bar-Gill

Krill Prize 2017
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yossi Buganim

Krill Prize 2017
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Eilon Shani

Krill Prize 2017
Tel Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Keren Censor-Hillel

Krill Prize 2016
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Netanel Lindner

Krill Prize 2016
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Maya Bar Sadan

Krill Prize 2016
Ben Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Jakub Abramson

Krill Prize 2016
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Itay Halevy

Krill Prize 2016
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yossi Yovel

Krill Prize 2016
Tel Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Daniel Deutch

Krill Prize 2016
Tel Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Assaf Rinot 

Krill Prize 2016
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Lioz Etgar

Krill Prize 2016
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Dana Reichmann

Krill Prize 2016
Hebrew Univ.

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Eran Ofek

Krill Prize 2015
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ido Amit 

Krill Prize 2015
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Barak Dayan

Krill Prize 2015
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Natalie Elia Herooty

Krill Prize 2015
Ben Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Oded Rechavi

Krill Prize 2015
Tel Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Alex Retzker

Krill Prize 2015
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Michael Schapira

Krill Prize 2015
Hebrew Univ.

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Sharon Ruthstein

Krill Prize 2015
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Uri Shapira

Krill Prize 2015
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Moran Bercovici

Krill Prize 2015
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Or Dunkelman

Krill Prize 2014
Haifa University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Irit Gat-Viks

Krill Prize 2014
Tel Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Lilach Gilboa

Krill Prize 2014
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Eran Bouchbinder

Krill Prize 2014
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Shahal Ilani

Krill Prize 2014
Weizman Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Roie Yerushalmi

Krill Prize 2014
Hebrew Univ.

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Daniel Podolsky

Krill Prize 2014
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Amir Yehudayoff

Krill Prize 2014
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Nathan Keller

Krill Prize 2014
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Niv Papo

Krill Prize 2014
Ben Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

David Nicolas Waldmann

Krill Prize 2013
University of Haifa

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Tomer Volansky

Krill Prize 2013
Tel-Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Nirit Dudovich

Krill Prize 2013
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Anat Levin

Krill Prize 2013
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Sagiv Shifman

Krill Prize 2013
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Itai Ynai

Krill Prize 2013
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Amit Kanigel

Krill Prize 2013
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Avinoam Zadok

Krill Prize 2013
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Jacob Hanna

Krill Prize 2013
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Jacob (kobi) Gal

Krill Prize 2013
Ben Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yoel Shkolnisky

Krill Prize 2012
Tel- Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Alex Bronstein

Krill Prize 2012
Tel – Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Erez Levanon

Krill Prize 2012
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Amos Tanay

Krill Prize 2012
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Nachum Ulanovsky

Krill Prize 2012
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ido Branslavsky

Krill Prize 2012
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Gil Alexandrowicz

Krill Prize 2012
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Louisa Meshi

Krill Prize 2012
Ben-Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Amir Amedi

Krill Prize 2011
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Avishay Gal-Yam

Krill Prize 2011
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Shai Meiri

Krill Prize 2011
Tel Aviv University 

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Taleb Mokari

Krill Prize 2011
Ben-Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Reuven Cohen

Krill Prize 2011
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Oren Cohen

Krill Prize 2011
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Yuval Shaked

Krill Prize 2011
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ehud Altman

Krill Prize 2010
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Kinneret Keren

Krill Prize 2010
Technion

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Anne Bernheim

Krill Prize 2010
Ben-Gurion University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Dan Thomas Major

Krill Prize 2010
Bar Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Eran Halperin

Krill Prize 2010
Tel-Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Masha Niv

Krill Prize 2010
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Julia Kempe

Krill Prize 2009
Tel Aviv University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Nathalie Questembert-Balaban

Krill Prize 2009
Hebrew University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Ilan Koren

Krill Prize 2009
Weizmann Institute

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members ofNPF, ABC, or PUP families. My research group and others identified the NPFs as the first GA transporter in plants 14• Although our studies suggest that individual NPF and ABC genes have specialized functions, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes. The major reason for this is that plant genomes are highly redundant. There are huge numbers of genes encoding NPF and ABC transporters (53 and 120, respectively, in Arabidopsis) that exhibit high redundancy despite diverse substrate specificity of the encoded proteins. This redundancy, with over 80% of all protein-coding genes belonging to families, illustrates the huge challenge to the field of plant genetics in general and to the study of hormone transport specifically. On top of that, certain transporters, such as some NPFs, can transport multiple hormone substrates (GA, ABA) generating a highly robust system that is unique and interesting but puzzling (J 2, 14, 17). Furthermore, transporters with high specificity for conjugated hormones, which must balance the subcellular active hormone pools, have not been identified.
We plan to address the burning questions that emerge from this recent progress in the field, all of which are challenging due to the functional redundancy of plant hormone transporters: 1) Do closely related NPF and ABC members transport multiple substrates and what is the biological importance of such activity? 2) Why have GA exporters, which must exist to enable the movement of the hormone, not been identified? 3) Are there specialized hormone transporters for conjugated hormones and what is their contribution to the rapid hormone response at tissue and subcellular levels? 4) Do subcellularly localized hormone transporters affect the hormone response and what is subcellular hormone map?
The major goal of the lab goals is to investigate the robust and specialized functions of plant hormone transporter families. In our lab we will are using multiple-targeted artificial microRNAs and CRISPR technology to establish Arabidopsis and tomato populations, respectively, deficient in multiple redundant hormone transporters. First stage, we generated a unique targeted forward genetic approach that bypasses functional redundancy in plants with a dynamic screening range. This allows us to first target the NPF and ABC families in Arabidopsis and tomato. At a second stage, we are using targeted high-throughput screens to identify developmental redundant phenotypes. These loss-of-function phenotypes combined with hormone-mediated physiological assays, analyses of transporter expression patterns and localization, and biochemical transport assays allows us to study NPF and ABC hormone transport mechanisms, identify missing exporters, and evaluate subcellular localization of hormone transporters. Our work in the past three years has identified novel putative GA, CK, IAA and ABA hormone transporters, including CRISPR application in tomato that recovered striking GA-mediated growth defects when six novel GA transporters were knocked out in tomato, thus emphasizing the outstanding strength of our screens. Having the novel CRISPR multiple-targeted platform at our disposal is a significant achievement, since it not only contribute to our understanding of hormone transport mechanisms but will also serve as a scientific breakthrough to overcome functional redundancy in all fields of plant biology and agricultural breeding.
In addition, there is growing amount of evidence suggesting that hormone transporters localized on intracellular compartments actively regulate the subcellular distributions of hormones and hormone intermediate (J 8-20). One of the labs aims is to obtain a deeper understanding of hormones distribution in snbcellular resolution, and address the question of quantitative endogenous hormone levels in different compartments. To profile cellular hormone metabolites within discrete organelles, we are using an innovative strategy to isolate distinct cellular compartments and reveal the complete profiles of active hormone and hormone precursors and conjugates in organelles. This approach will generate the first subcellular hormone localization map and will enable the quantification and characterization of the in vivo activities of known and unidentified subcellular hormone transporters. We believe that our studies will lead to a fuller understanding of hormone transporter functions and specialized subcellular activities.

Boaz Tsaban

Krill Prize 2009
Bar-Ilan University

Dr. Eilon Shani 
Scientific Overview:
Plant growth and development is mediated to a large extent by hormones. Plants regulate hormone response pathways at multiple levels including biosynthesis, metabolism, perception, and signaling (1-3). In addition, plants exhibit the unique ability to spatially regulate hormone distribution ( 4, 5). This ability is illustrated most clearly in the case of auxin (!AA). The combined activity of auxin influx and efflux carrier proteins generates auxin maxima and local gradients that inform developmental patterning. The regulation of the cellular localization of PIN-FORMED (PIN) efflux transporters determines the direction of auxin flow from one cell to another ( 6, 7). Until recently, little was known about the transport mechanisms and the distribution patterns of hormones other than auxin. These are exciting days for the plant hormone community as novel gibberellin (GA), abscisic acid (ABA), and cytokinin (CK) transporters have recently been identified (8-14) joining earlier findings on auxin transporters (15, 16), all are members o